Globalization and Populism: The Last Sixty Years

Frédéric Docquier, Lucas Guichard, Stefano Iandolo, Hillel Rapoport, Riccardo Turati & Gonzague Vannoorenberghe

ITSG Conference – University of Salerno & Manlio Masi Foundation

June 23-24, 2022

Research question

Characterize the long-term trends in populism, and identify the role of globalization shocks...

- Considering different margins of populism
- Accounting for the skill/origin structure of globalization shocks
- Covering a large sample of countries, elections, and years

Introduction

Populism has been on the rise in recent decades (Guriev and Papaioannou, 2021; Rodrik, 2021; Funke et al., 2020)

Among the several **determinants**, the literature in Economics highlights the role of **globalization** in its two dimensions:

- <u>Imports</u> Becker et al. (2017); Colantone and Stanig (2018); Autor et al. (2020); Colantone et al. (2021); etc.
- $\frac{\text{Immigration}}{(2017); \text{ Mayda et al. (2016); Guiso et al. (2017); Halla et al. (2022); Moriconi et al. (2022); etc.}$

Existing studies: How is populism usually defined?

- Narrow ideology splitting society between pure people and corrupted elite (Mudde, 2004) + Commitment to protect (Guiso et al., 2017; Rodrik, 2018; Morelli et al., 2021) + Other dimensions
- Measured with volume of populism = vote share of populist parties (dichotomous classifications based on expert views)

Existing studies: How is globalization analyzed?

- Imports and immigration usually studied *separately*: many studies!
- With some exceptions (Autor et al. (2020) for imports, Edo et al. (2019); Moriconi et al. (2019, 2022) for immig), lack of *skill-specific* dimension
- More generally, lack of *cultural* (or diversity) dimension

1 = 990

Contributions

Two main objectives:

1 Describe long-term evolution of populism

- Large sample: 55 countries, 628 elections, 1206 parties, 60-y span
- Richer and comparable measures of populism along different margins (volume vs. mean + left-right dimension)

2 Unified analysis of populism response to globalization:

- Skill structure of both trade & migration shocks
- Gravity-based IV using origin-year sources of variation
- Interaction with potential amplifiers: recessions, social media, diversity/cultural distance

Contributions

<u>Preview of the results</u>:

- Trends: fluctuations since 1960s, surge since 2007-08 (RW/EU)
- Closely linked to skill structure of imports and immigration
- Imports of LS labor intensive goods
 - Increase total/RW populism along mean & volume margins
 - Effect increases with de-industrialization and internet coverage
 - Effect is smaller if origin mix of goods is more diverse
 - No effect on LW populism (exc. severe crisis, EU, prop. repr.)
- Immigration of LS workers
 - Substitution of LW for RW populism along volume margin
 - No effect on volume of total populism and mean margin
 - No amplifying effect of cultural distance (or diversity)

Road map

1 Introduction

2 Data and Stylized Facts

- Populism score
- Comparison with existing data
- Margins and facts
- **3** Links with Globalization
- 4 Concluding remarks

Populism score

<u>Data</u> – Manifesto Project Database (MPD)

- Content analysis of parties' manifesto (salience, position)
- Coverage: 55 countries, 628 national election campaigns, 1,206 parties (at least one seat), 3,860 party-election pairs (1960-2018)
- Unbalanced sample of countries: breaks in 1973 and 1990

 $\frac{\text{Populism Score}}{\text{theory-based approach (PCA)}} + \frac{\text{mean margin}}{\text{margin}} - \frac{\text{Unsupervised and}}{\text{theory-based approach (PCA)}} + \frac{\text{Cluster analysis with k-means}}{\text{means}}$

- Anti-establishment stance (**AES**) as in Mudde (2004)
- Commitment to protect (**CTP**) as in Morelli et al. (2021), etc.

Populism score

Populism Score – MPD variables

- Anti-establishment stance (**AES**)
 - AES1 (+): Corruption (need to eliminate corruption & clientelism)
 - AES2 (+): Anti-pluralism view (lack of competence of others)
- Commitment to protect (**CTP**)
 - CTP1 (+): Protection of internal market
 - CTP2 (-): Favorable mentions of internationalism
 - CTP3 (-): Favorable mentions of EU
 - CTP4 (+): Government ownership of industries
- Two-step PCA based on correlation matrix

Populism score - PCA

	I. PC	CA (AES)	/CTP)	II. Corr. btw. AES & CTP			
	\mathbf{EV}	Score	Corr.	AES	CTP	L-R	\mathbf{R}^2
	(1)	(2)	(3)	(4)	(5)	(7)	(8)
Anti-establish- ment (AES):				-	$.09^{\dagger}_{(.02)}$.01† (.00)	0.27
- Pol. corruption - Anti-pluralism	$1.07 \\ .93$.71 .71	.73‡ .73‡				
Commitment to Protect (CTP):				$.13^{**}$ (.04)	-	01^{*} (.00)	0.11
- Protectionism	1.29	.41	.48‡				
- Internationalism	.96	41	46‡				
- EU institutions - Nationalization	.92 .83	60 .55	67‡ .63‡				

Level of significance: * p<0.05 ; ** p<0.01 ; † p<0.001 ;
‡ p<0.00001.

Populism score

Parties' Populism Score $(S_{i,e,t}^p)$

- Average of AES and COM (standardized)
- Mean = 0; SD = 0.81
- Distinctive features
 - 1 Self-determined by parties' manifesto
 - 2 Continuous (extent) and time-varying
 - 3 Well correlated with existing data
 - 1 Van Kessel (2015) Dummy, time-invariant, 2000-2013
 - Swank (2018) RW Dummy, time-invariant, 1960-2015
 - 🗓 PopuList (Rooduijn et al., 2019) Dummy, time-invariant, 1989-2018
 - 👿 Gpop 1 (Grzymala-Busse and McFaul, 2020) Dummy, time-invariant, 1960-2018
 - V Gpop 2 (Hawkins et al., 2019) Continuous, based on electoral speeches
 - Chapell Hill Expert Survey (Bakker et al., 2015) Continuous, 1998-2018

Populism score - Correlations

	I. Van Kessel (2000-2013)			II. Swank (1960-2015)			III. PopuList (1989-2018)			
	Popul	list party	(PRB)	RW Populist party (PRB)			Populist party (PRB)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
$S^p_{i,e,t}$	0.699^{***} (0.161)			0.460^{***} (0.112)			0.550^{***} (0.094)			
AES	(0.101)	0.247^{***}		(0.112)	0.252^{**}		(0.001)	0.156^{***}		
COM		(0.091)	0.474^{***} (0.093)		(0.100)	0.234^{***} (0.045)		(0.054)	0.428^{***} (0.069)	
Obs.	650	650	650	1658	1658	1658	1635	1635	1635	
Countries	25	25	25	16	16	16	28	28	28	
	IV. GF	Pop 1 (196	0-2018)	V. GPop 2 (1998-2017) Average Populism Speeches (OLS)			VI. CHES (1998-2018)			
	Popul	list party	(PRB)				People vs. Elite (OLS)			
	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	
$S^p_{i,e,t}$	0.376^{***} (0.081)			0.120^{**} (0.052)			1.262^{***} (0.210)			
AES		0.093^{*} (0.050)			0.057^{*} (0.032)			0.933^{***} (0.257)		
COM		(0.000)	$\begin{array}{c} 0.277^{***} \\ (0.053) \end{array}$		(0.002)	0.087^{*} (0.046)		(0.201)	$\begin{array}{c} 0.668^{***} \\ (0.130) \end{array}$	
Obs. Countries	$2847 \\ 36$	$2847 \\ 36$	$2847 \\ 36$	$\begin{array}{c} 100\\ 31 \end{array}$	$\begin{array}{c} 100\\ 31 \end{array}$	100 31	$\begin{array}{c} 176\\28\end{array}$	$\overset{176}{28}$	176 28	
DGIR	TV (2021)	I	Glob	alization a	and Popu	lism	Jun	e 23-24, 20	022 12	

Links with globalization 00000000000

Populism score

• Populist party
$$(\mathbf{1}_{i,e,t}^p = 1 \text{ if } S_{i,e,t}^p \ge \eta \times SD)$$

 \blacktriangleright Thresholds

- $\eta = 1$ "maximizes" partial correlation with alternative definitions
- $\eta = 1$ "maximizes" RAF with most alternative definitions
- Can be combined w. Left-Right index (Budge and Laver, 2016)
 - (LW, Centrist, RW) = (1st, 2nd, 3rd) terciles of left-right distr.

• Discussion:

- Adding more MPD components reduces partial correlations with existing measures
- $S_{i,e,t}^p$ is highly correlated with attitudes towards immig., cultural conservatism, multiculturalism (post-2006) in centrist/RW parties
- The 1-SD threshold justified by unsupervised clustering

ELE NOR

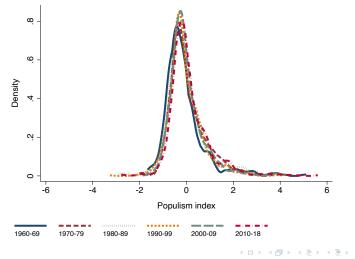
Links with globalization 00000000000

Margins of populism

Volume Margin – Votes gained by all populist parties (supervised)

$$\Pi_{e,t}^{V} = \frac{\sum_{i=1}^{I} \sum_{i=1}^{P} \mathbf{1}_{i,e,t}^{p} \pi_{i,e,t}^{p}}{\sum_{i=1}^{I} \sum_{i=1}^{P} \pi_{i,e,t}^{p}},$$
(1)

Mean Margin – Vote-weighted mean score of all parties (unsup.)


$$\Pi^{M}_{e,t} = \frac{\sum_{i=1}^{I} \sum_{i=1}^{P} S^{p}_{i,e,t} \pi^{p}_{i,e,t}}{\sum_{i=1}^{I} \sum_{i=1}^{P} \pi^{p}_{i,e,t}},$$
(2)

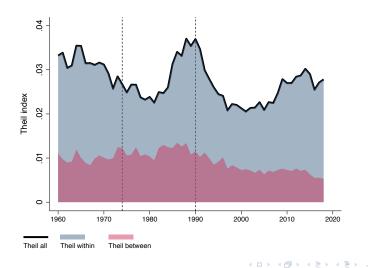
These variables are also computed at the country level (dependent)

Links with globalization 00000000000

Conclusions 000

Continuous score – Distribution

DGIRTV (2021)


Globalization and Populism

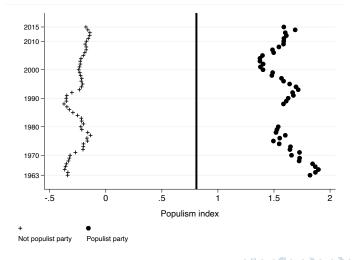
June 23-24, 2022

Links with globalization 0000000000

Conclusions 000

Continuous score – Theil

DGIRTV (2021)


Globalization and Populism

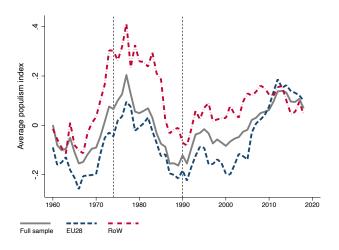
June 23-24, 2022

Links with globalization 00000000000

Conclusions 000

Dichotomous class. – dist. never-populists vs. others

DGIRTV (2021)


Globalization and Populism

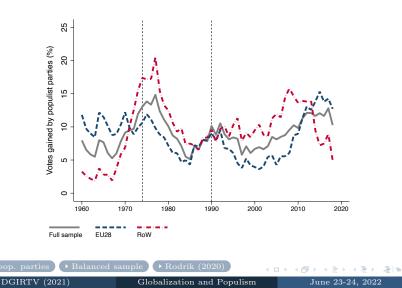
June 23-24, 2022

Links with globalization 00000000000

Conclusions 000

Continuous score – Mean margin

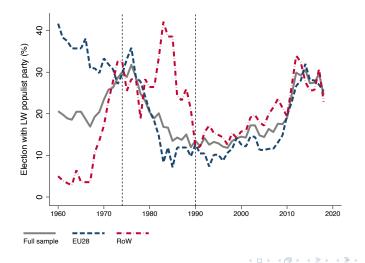
Balanced sample


DGIRTV (2021)

June 23-24, 2022

Links with globalization 00000000000

Conclusions 000

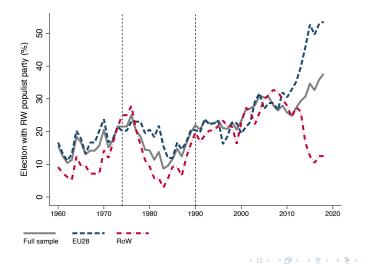

Dichotomous class. – Volume margin

Links with globalization 00000000000

Conclusions 000

Dichotomous class. – Elections with LW populists

DGIRTV (2021)


Globalization and Populism

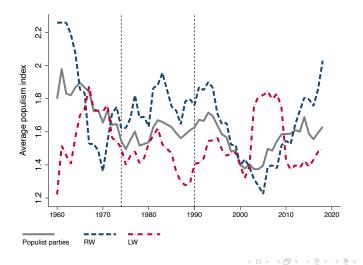
June 23-24, 2022

Links with globalization 00000000000

Conclusions 000

Dichotomous class. – Elections with RW populists

DGIRTV (2021)


Globalization and Populism

June 23-24, 2022

Links with globalization 00000000000

Conclusions 000

Dichotomous class. – Mean score LW/RW populists

DGIRTV (2021)

Globalization and Populism

June 23-24, 2022

Data and stylized facts

Links with globalization •0000000000

Conclusions 000

Road map

1 Introduction

2 Data and Stylized Facts

8 Links with Globalization

- Empirical specification
- Baseline results
- IV estimates
- Robustness
- Amplifiers

4 Concluding remarks

Conclusions 000

Empirical specification

Baseline model:

$$\begin{cases} \Pi_{i,e,t}^{M} = \alpha^{M} + \beta^{M} \mathbf{X}_{i,e,t} + \sum_{S} \gamma_{S}^{M} \mathbf{Mig}_{i,e,t}^{S} \\ + \sum_{S} \zeta_{S}^{M} \mathbf{Imp}_{i,e,t}^{S} + \theta_{i}^{M} + \theta_{t}^{M} + \epsilon_{i,e,t}^{M}, \\ \Pi_{i,e,t}^{V} = \exp\left[\alpha^{V} + \beta_{S}^{V} \mathbf{X}_{i,e,t} + \sum_{S} \gamma_{S}^{V} \log(\mathbf{Mig}_{i,e,t}^{S}) \\ + \sum_{S} \zeta_{S}^{V} \log(\mathbf{Imp}_{i,e,t}^{S}) + \theta_{i}^{V} + \theta_{t}^{V} + \epsilon_{i,e,t}^{V} \right] \end{cases}$$
(3)

As $\Pi^M_{i,e,t}$ is a continuous variable (linear), and $\Pi^V_{i,e,t}$ is a non-negative variable with 60% of zeroes (PPML)

Empirical specification

• Baseline specification

- OLS for $\Pi_{i,e,t}^M$, and PPML $\Pi_{i,e,t}^V$
- Full set of country and year FEs
- $\mathbf{Mig}_{i,e,t}^S$: LS and HS immigration flows
- $\mathbf{Imp}_{i,e,t}^{S}$: LS and HS imports of manuf. goods
- $\mathbf{X}_{i,e,t}$ includes GDPpc + Hum Cap + Empl. rate + Nb. parties
- Many other variables in appendix (bad controls)
- All variables = Averages of t and t 1
- IV results and robustness...
- Interactions with potential amplifiers...

Data and stylized fact

Baseline results

	Vo	blume (Π_i^V)	(e,t)	Mean $(\Pi_{i,e,t}^M)$			
	All	RW	LW	All	RW	LW	
	(1)	(2)	(3)	(4)	(5)	(6)	
$\log \frac{\mathrm{HC}_{it}}{\mathrm{HC}_{it}}$	-4.81**	-9.01***	5.06	-1.74***	-1.85***	-0.04	
	(2.09)	(3.41)	(5.27)	(0.54)	(0.54)	(0.37)	
$(\log) \operatorname{Imp}_{i,t-1 \to t} (LS)$	0.83***	1.33**	1.49^{*}	3.78**	4.28***	-0.11	
	(0.30)	(0.56)	(0.62)	(1.65)	(1.47)	(0.70)	
(log) $\operatorname{Imp}_{i,t-1 \to t}$ (HS)	-0.71	-1.30^{***}	-1.25	-0.21	-0.50*	0.36	
	(0.44)	(0.49)	(0.86)	(0.43)	(0.28)	(0.23)	
$(\log) \operatorname{Mig}_{i,t-1 \to t} (LS)$	0.14	1.52***	-1.78***	-0.17	1.73	-1.28	
, ., .,	(0.34)	(0.55)	(0.59)	(1.93)	(2.45)	(1.28)	
$(\log) \operatorname{Mig}_{i,t-1 \to t} (\mathrm{HS})$	-0.28	-1.32***	1.17^{*}	1.86	-2.63	3.65	
	(0.29)	(0.48)	(0.64)	(4.99)	(4.74)	(3.49)	
Observations	575	575	575	578	461	470	
(Pseudo-)R ²	0.40	0.37	0.51	0.50	0.41	0.48	
Year FE	1	1	1	1	1	1	
Country FE	1	1	1	1	1	1	

DGIRTV (2021)

June 23-24, 2022

IV strategy

• Baseline specification

• IV results - Gravity-model in "stage-zero"

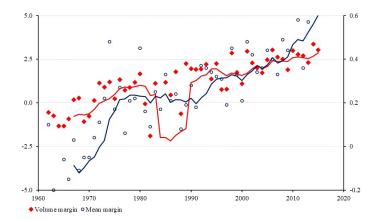
Gravity Model

- Strategy in line with China shock (Autor et al., 2020), weather shocks at origin (Munshi, 2003), or other shocks (Boustan, 2010; Monras, 2020; Klemans and Magruder, 2018)
- Predict skill-specific flows w. origin-time and dyadic FEs

$$Y_{ij,t} = \exp\left[\alpha + \theta_{ij}^{'} + \theta_{ij} * Post_{1990} + \theta_{j,t} + \epsilon_{ij,t}\right]$$

- IV/2SLS for $\Pi_{i,e,t}^{M}$
- Reduced-form IV for $\Pi_{i.e.t}^V$
- Robustness checks
- Interactions with potential amplifiers...

DGIRTV (2021)


IV results

	Volume $(\Pi_{i,e,t}^V)$			Mean margin $(\Pi_{i,e,t}^M)$			
	All	RW	LW	All	RW	LW	
	(1)	(2)	(3)	(4)	(5)	(6)	
(log) $\operatorname{Imp}_{i,t-1 \to t}$ (LS)	0.91*	1.82**	0.97	4.99**	4.06**	1.29	
	(0.50)	(0.84)	(0.84)	(2.33)	(1.77)	(1.42)	
(log) $\operatorname{Imp}_{i,t-1 \to t}$ (HS)	(0.66)	-2.14^{**} (0.87)	-0.72 (0.83)	-0.22 (0.54)	-0.59 (0.38)	0.45 (0.37)	
(log) $\operatorname{Mig}_{i,t-1 \to t}$ (LS)	(0.00) 0.53	1.97***	(0.00)	(0.54) 0.52	(0.33) 0.74	-0.75	
	(0.43)	(0.58)	(0.92)	(3.13)	(3.01)	(1.53)	
$(\log) \operatorname{Mig}_{i,t-1 \to t} (\mathrm{HS})$	-1.04^{*}	-2.02**	0.60	0.99	3.15	3.34	
	(0.56)	(0.89)	(1.23)	(10.12)	(7.90)	(4.75)	
Observations	575	575	575	578	461	470	
$(Pseudo)-R^2$	0.40	0.36	0.50	0.06	0.09	0.01	
K-Paap F-stat				12.05	11.36	9.45	
Year & Country FE	1	1	1	1	1	1	
Controls	1	1	✓	1	1	1	

Data and stylized facts

Conclusions 000

IV results – Time FE's

DGIRTV (2021)

June 23-24, 2022

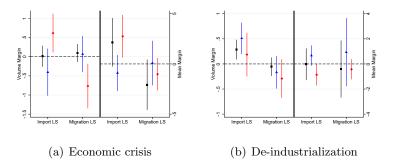
Summary of the results (in normal times)

- Skill dimension is instrumental!
- Imports in LS intensive goods
 - Increase volume & mean margins of total and RW populism
 - Supp (vol): increasing share of votes for populists (intensive)
 - Supp (mean): incr. score of moderately populist parties only
- Immigration of LS workers
 - Substitution of LW by RW populism
 - Supp (vol): along the extensive margin (nb. of parties > one seat)
 - Supp (mean): No impact on the mean margin
- If anything, HS intensive shocks reduce volume of RW populism
- Are these effects robust or amplified by other channels?

Robustness

- 1 Lag structure of glob. shocks
 - Robust if shocks in t, in t-1, since t-2 or e-1
 - Effect of Imports on LW if shocks measured on longer periods
- 2 Exports/Emigration (RHS) and Turnout (RHS/LHS)
 - No significant effect (or response)
 - No effect on the estimates for imports and immigration
- **3** Representative political system
 - No effect on estimates, except LW response to LS imports
- (1) Classification of populist parties (lax vs. strict def.)
 - Less significant with stricter def (key parties exit the list)
- **5** Sub-samples
 - Robust to post-1990 dummy (attenuates responses to imports)
 - In EU_{28} : stronger effects + LW populism response to imports
- **6** Robust to imputation of skill-specific flows

DGIRTV (2021)


Empirical specification

- Baseline specification
- IV results
- Interactions with potential amplifiers of <u>LS shocks</u> (dummies)
 - Economic crisis (negative growth spells)
 - De-industrialization (Δ Manuf in bottom decile)
 - Spread of social media (internet coverage in top decile)
 - Diversity of goods vs. cultural distance (in top decile)

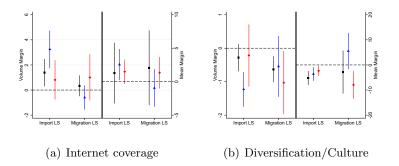
Data and stylized facts

Conclusions 000

Amplifiers

- 1 Linear terms are insignificant
- 2 Effect of Imp on vol. reinforced in times of de-industrialization + LW response in times of crisis along volume and mean margins
- **3** Effect of LS immig is unaffected (except a drop in LW responses in crisis)

DGIRTV (2021)


Globalization and Populism

ism Jui

Data and stylized facts

Conclusions 000

Amplifiers

- \blacksquare Linear effect of internet (+) and div (-) can be significant
- 2 Effect of Imp reinforced when internet coverage is large, attenuated if origin mix is more diverse (both margins for RW populism)
- 3 Cultural distance does not boost the populist response (drop in LW)

DGIRTV (2021)

Globalization and Populism

Road map

- 1 Introduction
- **2** Data and Stylized Facts
- **3** Links with Globalization
- **4** Concluding remarks

Concluding remarks

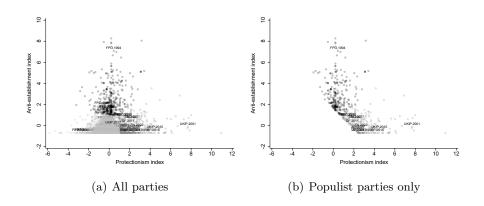
- **1** New continuous measures of populism (vol. and mean margins)
- 2 Populist parties have gained ground for 20 years (RW in EU!)
- **8** Link with size and structure of globalization shocks
 - Heterogeneous effects on margins of populism
 - Skill structure matters!
 - Populism response to LS import shocks (de-indust., internet)
 - Trade diversification reduces populism responses
 - LS migration shocks induce a substitution of LW for RW populism
 - We find no amplifying effect of cultural distance
- **4** Perspective to work at party level (entry/exit, electoral compet.)
- And to study the reverse causal impact of populism on the size and skill structure of trade and migration shocks (vicious circles)

ELE NOR

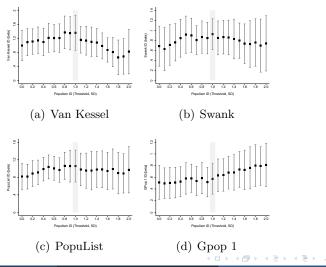
Thanks for your attention!

frederic.docquier@liser.lu

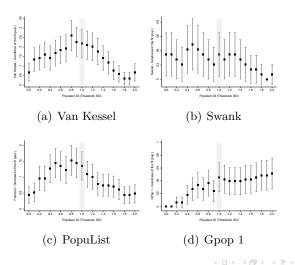
DGIRTV (2021)


Globalization and Populism

June 23-24, 2022


Our sample Back

Populism Score - K-means clustering • Back


Populist parties - Threshold selection w. partial corr

DGIRTV (2021)

Globalization and Populism

Populist parties - Threshold selection w. RAF • Back

DGIRTV (2021)

Globalization and Populism

June 23-24, 2022

Gravity model - First-stage • Back

	$(1) \\ \operatorname{Imp}_{i,e,t}^{HS}$	$(2) \\ \operatorname{Imp}_{i,e,t}^{LS}$	$(3) \\ \operatorname{Mig}_{i,e,t}^{HS}$	$(4) \\ \operatorname{Mig}_{i,e,t}^{LS}$
$\widehat{\mathrm{Imp}}_{i,e,t}^{HS}$	1.100^{***} (0.100)			
$\widehat{\mathrm{Imp}}_{i,e,t}^{LS}$		$\begin{array}{c} 1.139^{***} \\ (0.112) \end{array}$		
$\widehat{\operatorname{Mig}}_{i,e,t}^{HS}$			1.235^{***} (0.113)	
$\widehat{\operatorname{Mig}}_{i,e,t}^{LS}$				$\begin{array}{c} 1.137^{***} \\ (0.083) \end{array}$
Observations	575	575	575	575
Countries	52	52	52	52
Adj. R ²	0.94	0.93	0.86	0.86
Year & country FE	1	1	1	1
Controls	1	1	1	1

-

Nb of populist parties - evolution • Back

DGIRTV (2021)

Globalization and Populism

June 23-24, 2022

Rodrik (2020) - 19 countries, 31 parties \bullet Back

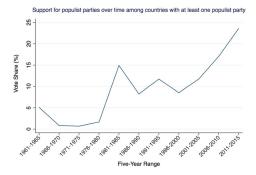
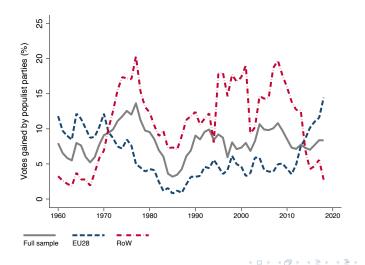



Figure 1 The global rise of populism. *Notes*: see Appendix for sources and methods.

Mean margin - Balanced sample • Back



DGIRTV (2021)

Globalization and Populism

June 23-24, 2022

Volume margin - Balanced sample • Back

June 23-24, 2022

Bibliography I

- Autor, D., Dorn, D., Hanson, G., and Majlesi, K. (2020). Importing political polarization? the electoral consequences of rising trade exposure. *American Economic Review*, 110(10):3139–3183.
- Bakker, R., Edwards, E., Hooghe, L., Jolly, S., Koedam, J., Kostelka, F., Marks, G., Polk, J., Rovny, J., Schumacher, G., Steenbergen, M., Vachudova, M., and Zilovic, M. (2015). 1999-2014 chapel hill expert survey trend file. Version 1.13 Available on chesdata.eu. Chapel Hill, NC: University of North Carolina, Chapel Hill.
- Barone, G., D'Ignazio, A., De Blasio, G., and Naticchioni, P. (2016). Mr. rossi, mr. hu and politics. the role of immigration in shaping natives' voting behavior. *Journal of Public Economics*, 136:1–13.
- Becker, S., Fetzer, T., and Novy, D. (2017). Who voted for brexit? a comprehensive district-level analysis. *Economic Policy*, 32(92):601–650.
- Boustan, L. (2010). Was postwar suburbanization "white flight"? evidence from the black migration. *Quarterly Journal of Economics*, 125(1):417—443.
- Budge, I. and Laver, M. (2016). Party policy and government coalitions. Springer.
- Colantone, I., Ottaviano, G. I., and Stanig, P. (2021). The backlash of globalization. CESifo Workink Paper, 9289.

★ E ▶ ★ E ▶ E E • ○ Q ○

Bibliography II

- Colantone, I. and Stanig, P. (2018). The trade origins of economic nationalism: Import competition and voting behavior in western europe. American Journal of Political Science, 62(4):936–953.
- Edo, A., Giesing, Y., Öztunc, J., and Poutvaara, P. (2019). Immigration and electoral support for the far left and far right. *European Economic Review*, 115:99–143.
- Funke, M., Schularick, M., and Trebesch, C. (2020). Populist leaders and the economy. Technical report, CEPR Discussion Paper DP15405.
- Grzymala-Busse, A. and McFaul, M. (2020). Votes for populists. *Global Populisms Project, Stanford University.*
- Guiso, L., Herrera, H., Morelli, M., and Sonno, T. (2017). Demand and supply of populism. CEPR Discussion Papers, 11871.
- Guriev, S. and Papaioannou, E. (2021). The political economy of populism. *Journal of Economic Literature*, forthcoming.
- Halla, M., Wagner, A., and Zweimuller, J. (2017). Immigration and voting for the far right. Journal of the European Economic Association, 15(6):1341–1385.
- Hawkins, K. A., Aguilar, R., Silva, B., Jenne, E., Kocijan, B., and Kaltwasser, C. (2019). Measuring populist discourse: The global populism database. *Paper presented at the* 2019 EPSA Annual Conference in Belfast, UK.

DGIRTV (2021)

Bibliography III

- Klemans, M. and Magruder, J. (2018). Labour market responses to immigration: Evidence from internal migration driven by weather shocks. *Economic Journal*, 128(613):2032–2065.
- Mayda, A. M., Peri, G., and Steingress, W. (2022). The political impact of immigration: Evidence from the united states. *American Economic Journal: Applied Economics*, 14(1):358–89.
- Monras, J. (2020). Immigration and wage dynamics: Evidence from the mexican peso crisis. Journal of Political Economy, 128(8):3017–3089.
- Morelli, M., Nicolo, A., and Roberti, P. (2021). A commitment theory of populism. CESifo Working Paper, 9473.
- Moriconi, S., Peri, G., and Turati, R. (2019). Immigration and voting for redistribution: Evidence from european elections. *Labour Economics*, 61(101765).
- Moriconi, S., Peri, G., and Turati, R. (2022). Skill of the immigrants and vote of the natives: Immigration and nationalism in european elections 2007–2016. *European Economic Review*, 141:103986.
- Mudde, C. (2004). The populist zeitgeist. Government and Opposition, 39(7):541-563.

ELE DOG

Bibliography IV

- Munshi, K. (2003). Networks in the modern economy: Mexican migrants in the u.s. labor market. Quarterly Journal of Economics, 118(2):549–599.
- Rodrik, D. (2018). Populism and the economics of globalization. Journal of International Business Policy, 1(1/2):12–33.
- Rodrik, D. (2021). Why does globalization fuel populism? economics, culture and the rise of right-wing populism. *Annual Review of Economics*, 13(forthcoming).
- Rooduijn, M., Van Kessel, S., Froio, C., Pirro, A., De Lange, S., Halikiopoulou, D., Lewis, P., Mudde, C., and Taggart, P. (2019). The populist: An overview of populist, far right, far left and eurosceptic parties in europe. *Database*.
- Swank, D. (2018). Comparative political parties dataset: Electoral, legislative, and government strength of political parties by ideological group in 21 capitalist democracies, 1950-2015. Electronic Database, Department of Political Science, Marquette University.

Van Kessel, S. (2015). Populist parties in europe: Agents of discontent? Springer.

A B N B B NOR