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Abstract

This paper presents a spatial economy in the spirit of the so called “new economic
geography” literature in which strategic interactions among firms are operative. It
is shown that the forces driving regional concentration of economic activity crucially
depend on firms’ pricing decisions. Strategic interactions affect the critical levels of trade
costs at which the symmetric equilibrium is broken, core-periphery patterns become
sustainable and trade occurs. In particular, when firms located in the same region
collude a bell-shaped curve of spatial development may be observed. For decreasing
transport costs from high to intermediate agglomeration and divergence of industrial
activity take place. Further reductions encourage firms to locate in different regions
and a symmetric configuration eventually arises. On the other hand, when firms do not
collude a core-periphery pattern always emerges for low transportation costs as in the
standard core-periphery model with monopolistic competition.
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1 Introduction

One of the key contributions of the “new economic geography” (neg) literature (see e.g.

Fujita et al. 1999, Baldwin et al. 2003 and Ottaviano and Thisse, 2004) consists in provid-

ing an analytical framework to describe the trade-off between centrifugal and centripetal

forces in a spatial economy. Standard core-periphery models (cp) adopt a Dixit-Stiglitz

monopolistic competition market structure allowing the analysis of aggregate implications

of increasing returns to scale but neglecting strategic interactions among firms, as pointed

out by Matsuyama (1995) and Neary (2000). Furthermore, as remarked by Fujita and

Thisse (1996), firms tend to be worried about the choice of their close competitors, so that

strategic interactions are inherent to spatial models and could drive location decisions.

The main aim of the present paper is to show how interactions among oligopolistic

firms affect the spatial pattern of economic structure in a cp model with transport costs,

increasing returns, product differentiation and labor mobility in a two-region, two-sector,

two-factor economy. For this scope we modify the basic linear cp setup proposed by Ot-

taviano et al. (2002) by introducing oligopolistic pricing competition. Ottaviano et al.

(2002) present an alternative model of agglomeration and trade. They depart from the

Dixit-Stiglitz version of monopolistic competition using a quadratic sub-utility function

and show that firms’ pricing policies are affected by their geographical location and by the

total number of competitors.1

To the best of our knowledge the only contribution studying the implications for spatial

agglomeration of a different market structure along the lines of the neg literature is given

by Combes (1997). Combes builds a two-country, two-sector partial equilibrium model

with Cournot competition, in which strategic interactions act as a force driving location.

He shows that quantity competition may lead to the agglomeration of production in the

initially developed region in presence of high scale economies or when transportation costs

are low enough, consistently with the neg literature with monopolistic competition market

1In Ottaviano et al. (2002) the general insights of the basic core-periphery model still hold. In particular,
a core-periphery pattern is always sustainable for low transportation costs.
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structure. In this situation, the fiercer competition, which tends to reduce profits of firms

located in the region where more firms operate, is counterbalanced by the reduction in

imports and by larger total market shares.

In the present paper we distinguish between two possible types of strategic interaction

on pricing decisions: no collusion and collusion. From our analysis it emerges clearly that

interactions matter in driving location decisions and affect critical levels of trade costs at

which the symmetric equilibrium is broken, core-periphery patterns become sustainable and

trade takes place.

When firms collude spatial configurations emerging for different levels of trade costs

are shown to critically depend on the main features of the economy, such as the degree of

increasing returns, the dimension of agriculture sector, the degree of substitution between

goods and the intensity of consumers’ preference for differentiated goods. On the other hand,

in the absence of collusion the relationship between the spatial distribution of economic

activity and the level of economic integration is robust to changes in the main parameters of

the model. The centrifugal role played by the dimension of the agriculture sector in driving

manufacturing activity spatial allocation seems to be much stronger under collusion.

Most importantly, when oligopolistic firms do not collude a core-periphery pattern is

a stable equilibrium for low transportation costs, consistently with standard cp models.

By contrast, when firms located in the same region collude in both regions we observe a

bell-shaped curve of spatial development: spatial inequalities in the location of production

activity first arise and then fall during a process of economic integration. In these circum-

stances we observe that for low transportation costs a symmetric distribution of economic

activity is a stable configuration.2 In addition, in the presence of collusive firms partial

agglomeration equilibria might emerge.

Finally, using this framework we are able to show that market forces yield agglomeration

2The standard cp models are unable to explain why in the process of increasing regional integration a core-
periphery production structure is followed by a phase involving interregional convergence (see Williamson,
1965). This limitation of the standard model has been overcome by removing some peculiar assumptions; in
particular, the so-called “bell-shaped” curve of spatial development may emerge introducing urban costs or
heterogenous workers in the cp models. For details, see Puga (1998), Krugman and Venables (1995), Picard
and Zeng (2005), Tabuchi and Thisse (2002).
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(dispersion) for values of trade costs for which it is socially optimal to keep manufacturing

activities dispersed (agglomerated). In the particular case of low trade costs we observe

that a core-periphery pattern is always socially desirable. Clearly, full economic integration

will be welfare-improving only in the absence of any collusive behavior among firms.

The remainder of the paper is organized as follows. Section 2 presents the basic model

distinguishing between non collusive and collusive pricing decisions; Section 3 analyzes how

the spatial distribution of industrial activity and the implied welfare level are affected by

economic integration, strategic interactions and other underlying economic features; Section

4 concludes.

2 The Model

The economy presents two regions, Home, H, and Foreign, F . It has two sectors, perfectly

competitive agriculture and oligopolistic manufacturing. Each sector employs a single fac-

tor: labor for manufacturing, L, and farmers for agriculture, A. Both factors are assumed

to be sector-specific and exogenously given. Farmers are evenly distributed across the two

regions and are spatially immobile, while workers in manufacturing are mobile between

regions.

The economy produces two types of goods: a homogenous agricultural good and a num-

ber of horizontally differentiated manufacturing goods. The agricultural good is produced

under constant returns of scale and perfect competition and can be traded freely inter and

intra regions, without incurring in any transportation cost. The homogenous good is chosen

as numéraire and consumers are assumed to have a positive initial endowment of it.

Horizontally differentiated manufacturing goods are produced under increasing returns

to scale and imperfect competition, using the mobile factor L as the only input. In the

manufacturing sector each firm is assumed to have a certain market power and is aware of

its influence on the market outcome. It follows that each firm takes into consideration the

reactions of other firms when deciding on price.
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There is a discrete number of firms N . The existence of high economies of scales and

of an exogenous total amount of manufacturing labor force limits the number of firms

operating with profit in the market. Each variety of the differentiated goods is produced

by a single firm. As a result each producer has a certain market power in its own variety

market. The manufacturing good can be traded across regions at a positive cost of τ units

of the numéraire good for each unit shipped. The cost τ accounts for all the impediments

to trade and measures the level of market integration. On the other hand, intra-regional

sales in manufacturing good are costless. Markets are segmented in the sense that firms can

perfectly price discriminate across markets, so that same goods can have different prices in

different regions.

2.1 Demand Side

Following Ottaviano et al. (2002) preferences are described by a quasi-linear utility function

with a quadratic sub-utility that is assumed to be symmetric in all varieties and identical

across individuals:

U(q) = q0 + α
N

∑

i=1

qi −
β

2

N
∑

i=1

q2
i −

γ

2

N
∑

i=1

N
∑

j 6=i

qiqj , (1)

where qi is the quantity of variety i = 1..N and q0 is the quantity of the numéraire good.3 All

parameters are assumed to be positive. In particular β > γ > 0, implying that consumers

love variety. These assumptions ensure that U is strictly concave. The parameter γ measures

the degree of substitution between varieties so that goods are substitutes, independent or

complements according to whether γ R 0. The larger γ the closer substitutes goods are.

When β = γ goods are perfect substitutes and equation (1) degenerates into a standard

quadratic utility defined over a homogenous product. Finally, the parameter α indicates

the intensity of consumers’ preferences for differentiated goods. The utility function (1) can

be better expressed after some simple manipulations as:

3The use of a quasi-linear utility function leads to a partial equilibrium analysis, in that the income effect
on the demand for differentiated goods is completely neglected. At the same time, the numéraire good can
be seen as a composite good, formed by the rest of the goods produced in the economy, which captures all
the variations in income level. See Vives (1999) and Ottaviano et al. (2002) for details.
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U(q) = q0 + α
N

∑

i=1

qi −
β − γ

2

N
∑

i=1

q2
i −

γ

2

(

N
∑

i=1

qi

)2

. (2)

Each individual is endowed with q0 > 0 units of the numéraire and one unit of labor of

type L or A. Her budget constraint is defined as follows:

N
∑

i=1

piqi + q0 = m + q0, (3)

where pi is the price of variety i, m is labor income and the price of the agricultural good

is normalized to one.

The inverse demand function for each variety is obtained by maximizing the utility

function (2), subject to the budget constraint (3). Given the strict concavity of the utility

function the following first order conditions are also sufficient for a maximum:

∂U(q)

∂qi
= −pi + α − (β − γ)qi − γ

N
∑

j=1

qj = 0, (4)

where i = 1..N.

Solving the budget constraint (3) for the numéraire q0, substituting it into the utility

function and solving for the first order condition for each variety i yield the inverse demand

function:

pi = α − (β − γ)qi − γ
N

∑

j=1

qj . (5)

Solving the inverse demand function of each variety for qi and summing up all the N

inverse demand functions, after some algebraic manipulations one can obtain the demand

function for each variety:

qi = a − bpi + c
N

∑

j=1

(pj − pi), (6)

that we can expressed as:

qi = a − (b + cN) pi + c
N

∑

j=1

pj , (7)
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where a ≡ α
β+γ(N−1) , b ≡ 1

β+γ(N−1) and c ≡ γ
(β−γ)[β+γ(N−1)] .

Note that (b + cN) denotes the own price effect and c is the cross price effect. The own

price effect is larger than the cross price effect and the sum of all the cross price effects cN .

According to equation (7) the demand of a certain variety falls when its own price rises not

only in absolute terms but also relatively to the average price.

2.2 Supply Side

In the supply side the agricultural sector is perfectly competitive and the homogeneous good

is produced under constant returns to scale. Technology in agriculture requires that one unit

of output is produced using one unit of labor A. The assumption that the agricultural good

can be freely traded between regions implies that in equilibrium the wage of the farmers in

both regions is the same, that is wA
h = wA

f = 1.

In the manufacturing sector the differentiated good is produced in oligopoly and under

increasing returns to scale. Technology in manufacturing requires that any amount of a

variety is produced using φ units of labor L. The marginal cost of production is set equal

to zero as in Ottaviano et al. (2002).

The fixed amount φ measures the degree of increasing returns and determines the number

of oligopolistic firms operating in the market. The total number of varieties produced in

the economy N (i.e. the number of firms) depends on the total labor force of the economy,

L, and on the level of increasing returns:

N =
L

φ
. (8)

Let nh and nf be the number of firms in region H and F, respectively. Labor market

clearing conditions in both regions imply:

nh =
λL

φ
, (9)
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nf =
(1 − λ)L

φ
, (10)

where N = nh +nf and λ ∈ [0, 1] is the share of workers L located in region H. According

to (9) and (10) the region presenting the larger proportion of workers is also the region

where the majority of firms operate.

Equilibrium wage in both regions is determined as the results of a bidding process among

firms demanding labor. Firms interact in the oligopolistic market of the manufacturing

good, but they compete in the labor market so that all gross profits are eventually absorbed

by labor costs. Since we assume the existence of positive transport costs τ , each firm is able

to set a price specific to the region where the product is sold. In other words, the positive

transport cost allows firms to segment markets. From this time onrward we will focus on

region H, given that for region F the same equations can be derived by symmetry.

From (7), the demand functions faced by a Home firm i in H and in F are, respectively:

qi,hh = a − (b + cN)pi,hh + cPh, (11)

and

qi,hf = a − (b + cN)pi,hf + cPf , (12)

where Ph and Pf are the price indices in region H and region F defined as Ph =
∑nh

j=1 pj,hh+

∑nf

k=1 pk,fh and Pf =
∑nh

j=1 pj,hf +
∑nf

k=1 pk,ff .

Since we solve the model under oligopolistic pricing competition, that is when firms

maximize their profits setting price, we express profits as function of prices. Profits made

by the representative Home firm i in both markets are defined as follows:

Πi,h = pi,hhqi,hh(pi,hh)(A/2 + λL) + (pi,hf − τ)qi,hf (pi,hf )[A/2 + (1 − λ)L] − φwh, (13)

where wh is the wage prevailing in region H and qi,hh(pi,hh) and qi,hf (pi,hf ) are the demand

functions faced by Home firm in the two regions given by (11) and (12). It should be noted

that λL denotes the fraction of manufacturing workers located in H, while farmers are
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evenly spread between the two regions.

The representative Home firm i maximizes its profits (13) with respect pi,hh and pi,hf ,

taking into account the effects that its pricing decisions will produce on the price index of

each region, Ph and Pf . From this point of view firms interact strategically in both markets.

In the following sections we will consider, in turn, the case in which firms interact among

each others without colluding and the case in which Home (Foreign) producers collude in

both markets H and F . In particular, we will consider the case in which firms of the same

nationality collude among each others, while firms of different nationalities compete in both

markets.4

2.3 No Collusion

In this section we consider the case in which producers interact among each others without

colluding. In this case firms independently set the prices they charge for their output and

have to supply all the demand arising at the price they charge.

The Home firm i maximizes its profits (13) with respect to pi,hh and pi,hf . By solving

the optimization problem we obtain the following best reaction functions:

phh =
a + cnfpfh

2(b + cN) − cnh − c
, (14)

phf =
a + cnfpff

2(b + cN) − cnh − c
+

b + cN − c

2(b + cN) − cnh − c
τ . (15)

where we have used the facts that ex post pi,hh = phh and pi,hf = phf for each i = 1..nh and

that pk,ff = pff , pk,fh = pfh for each k = 1..nf . By symmetry one can derive analogous

best reaction functions for the representative Foreign firm.

Combing all the reaction functions and solving for the prices, phh, pff , phf and pfh we

4In the Appendix it is shown that in the case of collusion among all firms of the economy any spatial
configuration is stable. In such circumstances, firms will set the same price in both markets and there will
be no incentives for workers to migrate from one region to another.
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obtain:

phh =
a

2b + cN − c
+

b + cN − c

(2b + 2cN − c) (2b + cN − c)
cnfτ , (16)

pff =
a

2b + cN − c
+

b + cN − c

(2b + 2cN − c) (2b + cN − c)
cnhτ , (17)

pfh = phh +
b + cN − c

2b + 2cN − c
τ , (18)

phf = pff +
b + cN − c

2b + 2cN − c
τ . (19)

From the above results it clearly emerges that for τ = 0 equilibrium prices do not depend

upon the geographical allocation of firms and phh = pfh = pff = phf .

Given the equilibrium prices (16)-(19) the level of freight absorption crucially depends

on the localization of firms. In particular we have the following result.

Proposition 1: Given the equilibrium prices (16)-(19) the fraction of trade costs that

the Home (Foreign) firm passes on to the consumers, phf − phh (pfh − pff ), is smaller than

1
2τ if nh − nf < (>) 2b+cN−c

2(2b+2cN−c) . Proof: see Appendix.

The proposition asserts that there is more freight absorption for the Home firm when

the foreign market is the largest one. In the attempt to penetrate the larger distant market

the Home firm will bear the burden of a higher fraction of trade costs.

For high trade costs firms can set higher prices in their local market since they are more

protected from international competition. By contrast, prices set in the distant markets

net of transportation cost phf − τ (pfh − τ) are decreasing in τ , because entering foreign

markets is more difficult. Let τ trade denote the threshold level of transport costs ensuring

trade we have the following result.

Proposition 2: Given the equilibrium prices (16)-(19) the Home (Foreign) firm’s price
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set on Foreign (Home) market net of transport costs is positive for any workers distribution

if τ < τ trade = a(2b+2cN−c)
(2b+cN−c)(b+cN) . Proof: see Appendix.

According to Proposition 2 the threshold level of transportation cost depends in a

complex fashion on the number of firms operating in the economy and on the preference

parameters and is such that τ trade < a/b.

Finally, we observe that prices are lower in the largest market because competition

among firms is stronger. The price index is lower in the region where more firms are

located.

Proposition 3: If nh > (<)nf then phh < (>)pff and pfh < (>)phf implying that

Ph < (>)Pf . Proof: see Appendix.

2.4 Collusion

Consider now the case in which producers located in the same region collude in both markets.

Firms producing in the same region set the same price in each market, it follows that the

relevant price indexes can be re-written as Ph = nhphh + nfpfh and Pf = nhphf + nfpff ex

ante. The representative Home firm maximizes its profits (13) with respect to phh and phf .

By solving the optimization problem we get the following best reaction functions:

phh =
1

2

a + cnfpfh

b + cnf
, (20)

and

phf =
1

2

a + cnfpff + τ(b + cnf )

b + cnf
. (21)

Symmetric best reaction functions can be derived for the representative Foreign pro-

ducer. By solving the above functions for the prices we obtain equilibrium prices:

phh =
acnf + (b + cnh)(2a + nfcτ)

4b(b + cN) + 3c2nhnf
, (22)
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phf = phh +
(2b + cnf )(b + cnh)

4b(b + cN) + 3c2nhnf
τ , (23)

pff =
acnh + (b + cnf )(2a + nhcτ)

4b(b + cN) + 3c2nhnf
, (24)

pfh = pff +
(2b + cnh)(b + cnf )

4b(b + cN) + 3c2nhnf
τ . (25)

Equilibrium prices depend upon demand and firms’ spatial allocation across space. The

dependence on the firms’ distribution between regions relies on the level of transportation

costs τ : the lower τ , the lower the impact of reallocation of firms on equilibrium prices.

When τ is equal to zero we observe that phh = phf and pff = pfh. In other words, in

the absence of transportation costs Home (Foreign) producers set the same price in both

markets. However, as long as nh 6= nf we observe that phh 6= pfh and pff 6= phf , that

is equilibrium prices still depend on the spatial distribution of firms, contrary to the non

collusive case. Furthermore, both phh and pff are increasing in τ , because if transportation

costs are high firms tend to face a less fierce competition by the foreign firms in their local

market. By contrast, net equilibrium prices phf −τ and pfh−τ are decreasing in τ , because

if barriers to trade are high it is more difficult for firms to sell their products in the foreign

markets. Equilibrium prices increase with the parameter a which is proportional to the

relative desirability of the manufacturing goods with respect to the numéraire good, α.

We observe that at the given equilibrium prices oligopolistic firms bear the burden of

more than one half of transportation costs as summarized in the following proposition.

Proposition 4: Given the equilibrium prices (22)-(25) both Home and Foreign firms

absorb part of the transportation cost and transfer on the consumers less than one half of

it, (phf − phh), (pfh − pff ) < 1
2τ . Proof: see Appendix.

According to the above proposition in order to enter the Foreign market the Home firm

bears the burden of a higher fraction of trade costs, no matter what the dimension of the
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distant market is.

Trade occurs between the two regions provided that prices net of transportation costs

are positive. In this case we have the following result.

Proposition 5: Home (Foreign) firm’s price set on Foreign (Home) market net of

transport cost is positive if and only if τ < τ trade = 2ab+acN+acnh

2b2+c2nf nh+2Nbc
. Proof: see Appendix.

As in the non collusive case the critical level of transportation costs depends on prefer-

ences and the number of firms operating in the economy.

Finally, we have the following results on price differentials.

Proposition 6: When the trade condition holds (τ < τ trade) and τ > 0 if nh > (<)nf ,

then phh > (<)pff and phf > (<)pfh . The net effect on the price index is such that if

nh > (<)nf then Ph < (>)Pf . Proof: see Appendix.

According to Proposition 6 the larger the number of colluding firms of the same na-

tionality the higher the prices that these firms will be able to set in both markets. However,

the price index is lower in the region where more firms are located.

3 Firms Spatial Distribution

The agricultural labor force, as seen above, is exogenously given and, by assumption, it

is evenly distributed between the two regions. Manufacturing labor force, by contrast, is

mobile. Workers are assumed to move toward the region which offers a higher level of utility.

The driving force of migration is the utility differential between regions, so that a spatial

equilibrium arises when no worker can get a higher utility level by migrating to the other

region.

By the properties of the quasi-linear utility functions, the indirect utility in regions H

and F are defined as follows:
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Vh = Sh + wh + q0, (26)

Vf = Sf + wf + q0. (27)

A spatial equilibrium is verified at λ ∈ (0, 1) when the utility differential is zero:

∆V (λ) ≡ Vh − Vf = (Sh − Sf ) + (wh − wf ) = 0, (28)

or at λ = 0 when ∆V (0) ≤ 0 or at λ = 1 when ∆V (1) ≥ 0. Clearly, from (28) the

symmetric configuration, λ = 1/2, is always an equilibrium. According to the standard

literature on migration and agglomeration of economic activity mobile workers are assumed

to be attracted by the region displaying a utility higher than the average utility. In general,

the distribution of manufacturing workers between regions changes over time to the extent

that utility differs across regions. The equation of motion describing the migration dynamics

with respect to time t is the following:

•

λ ≡
dλ

dt
= λ[Vh − λVh − (1 − λ)Vf ] = λ(1 − λ)∆V (λ). (29)

In spatial equilibrium no migration occurs, so that
•

λ = 0. Workers move from region

F to H when ∆V (λ) > 0, and from region H to F when ∆V (λ) < 0. According to

the differential equation (29) a spatial equilibrium is stable if for any marginal deviation

from the equilibrium the economy is driven back to its original state by the equation of

motion. In other words, a spatial equilibrium is locally stable if for any marginal deviation

of the population distribution from the equilibrium the equation of motion (29) brings the

distribution of workers back to the original one. When some workers move from one region

to the other we assume that local labor markets adjust instantaneously. More precisely,

the number of firms in each region must be such that the labor market clearing conditions

(9) and (10) remain valid for the new distribution of workers. At the same time utility
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differential depends on the distribution of manufacturing activity in the economy.

The symmetric equilibrium is stable (unstable) if d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

< (>)0. Conversely,

the core-periphery pattern is stable (unstable) at λ = 1 if the utility differential is positive

(negative), ∆V (1) > (<)0. By symmetry, the core-periphery equilibrium is stable (unstable)

at λ = 0 if the utility differential is negative (positive), ∆V (0) < (>)0.

From this point of view there exists a value of τ where d∆V (1/2)/dλ changes sign and

an other one where ∆V (λ) changes sign for λ = 0, 1. Consistently with the literature, let

define the first critical value of transportation cost the “break point”, τ b, and the second

one the “sustain point”, τ s. The break point is the critical level of trade costs at which the

diversified equilibrium is on the brink of instability and symmetry is broken. The sustain

point is the threshold level of trade costs at which agglomeration of manufacturing starts

to be a stable equilibrium.

3.1 No collusion

In the absence of collusion it can be shown that d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

is a quadratic function of τ of

the form (see Appendix C):

d∆V (λ)

dλ

∣

∣

∣

∣

λ= 1

2

= τB1 − τ2B2
2 , (30)

where B1, B2 are positive coefficients which depend in a very complex fashion on all the

other parameters of the model. The above equation simply implies that there exists one

break point at which the symmetric equilibrium ceases to be stable, τ b = B1

B2
.

Similarly, it can be shown that

∆V (1) = τS1 − τ2S2
2 , (31)

where S1, S2 > 0. From (31) it clearly emerges that the sustain point at which the cp

becomes sustainable is τ s = S1

S2
.

Since the model is not analytically tractable in order to analyze how spatial equilibrium
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changes with trade costs we will rely on several numerical examples, assigning different

values to the parameters of the model. We will also check for robustness of our results

carrying out a sensitivity analysis. The baseline calibration is reported in Table 1.

Figure 1 plots the utility differential between regions, ∆V (λ), against the share of man-

ufacturing workers in the Home region, λ, for different values of trade costs in the interval

(0, τ trade). Figure 1 represents a variant of the so-called “wiggle diagram” used in the stan-

dard cp literature (see e.g. Baldwin et al., 2005 and Fujita et al. 1999). Curves, in fact,

wiggle as trade costs change. All four curves are calculated at baseline calibration reported

in Table 1 with the agriculture labor force A being equal to 4. As it will be shown below,

the dimension of the agriculture sector should be sufficiently large for trade to occur under

all possible spatial allocations of manufacturing activity.5 For low levels of τ (τ = 0.2, 0.5)

we observe that only core-periphery configurations are stable. By contrast, for high trade

costs (τ = 1.06) the symmetric equilibrium is the unique stable pattern. Finally, it can be

noted that both the core-periphery pattern and the symmetric equilibrium are stable for

intermediate levels of trade costs (τ = 0.96).

In order to better illustrate the above results we can consider the bifurcation diagram

reported in Figure 2 plotting λ against trade costs, τ . Solid and dotted lines denote stable

and unstable equilibria, respectively. A core periphery pattern is sustainable for τ ≤ τ s,

while the stability of the symmetric equilibrium is broken at τ = τ b. Since τ s > τ b all

configurations are stable for τ b < τ < τ s.

These results are consistent with the main predictions of the standard neg literature,

according to which agglomeration of manufacturing activity is more likely when transport

costs are low. Moreover, the existence of an interval of trade costs for which all config-

urations are stable suggests that, at least under the baseline calibration, the bifurcation

diagram, describing the stability of the equilibria is given by the standard “tomahawk”

diagram.6

5In the following section we will show that the centrifugal force of the agriculture sector is much stronger
under collusion. For high levels of agricultural labor force, in fact, trade occurs only when manufacturing
firms are identically split between the two regions.

6In Ottaviano et al. (2002) since equation (28) is linear in λ the “break point” corresponds to the “sustain
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In what follows we analyze how the critical values of τ change in function of the degree

of increasing returns, the dimension of agriculture sector, the degree of substitution between

goods and the intensity of consumers’ preference for differentiated goods.

Degree of increasing returns, φ

Figure 3a reports the sustain and the break points (τ s, τ b) as function of the degree of

increasing returns, φ. Let the solid line indicate τ s and the dotted line τ b. The critical level

of trade costs τ trade is represented by the lighter dotted line. We observe that τ s is always

larger than τ b though the difference is negligible. However, this tiny gap between τ b and τ s

opens up the possibilities of multiple equilibria.

The interval of trade cost for which the core-periphery pattern is stable tends to be

larger for a high degree of increasing returns (i.e. low number of firms). Conversely, for

φ → 0 the symmetric equilibrium is the only possible configuration. The dynamics of the

economy described in the bifurcation diagram of Figure 2 is thus robust to changes in the

degree of increasing returns.

Dimension of agriculture sector, A

Figure 3b illustrates the sustain and the break points as function of the dimension of the

agriculture of the economy A. As expected, both critical levels of τ are decreasing in A

implying that a core-periphery configuration is not sustainable for very large levels of the

agriculture sector. The dimension of the agricultural sector works as a centrifugal force. It

should be also noted that for low levels of A trade occurs only in the symmetric equilibrium.

Degree of substitution, γ

Figure 3c plots the sustain and the break points as function of the degree of substitution

among goods, γ. Higher γ implies that consumers consider different varieties as closer

substitutes. The interval of trade costs under which the core-periphery configuration is

point”.
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sustainable tends to be larger for low degrees of substitution. On the other hand, when

goods tend to be perfect substitutes, the manufacturing activity is allocated evenly across

regions.

Intensity of consumers’ preference for differentiated goods, α

Figure 3d shows the critical levels of trade costs as function of the intensity of consumers’

preference for differentiated goods with respect to the homogenous one. As expected for

high α full agglomeration of manufacturing activity is sustainable for a larger interval of

τ . Intensity of consumers’ preference for differentiated goods works as a centripetal force

since the higher α the larger the share of income consumers wish to spend for differentiated

products.

3.1.1 Welfare analysis

Let Ω be the world social welfare defined as the sum of the indirect utilities of all the

individuals of the economy:

Ω = (Sh + wh)λL + (Sf + wf ) (1 − λ)L +
A

2
(Sh + 1) +

A

2
(Sf + 1) . (32)

It can be shown that the above expression has always an interior extremum at λ = 1/2.

The symmetric configuration is the optimum only if trade costs are above a certain critical

value.

The grey areas in the set of Figures 4 represent the combinations of trade costs and

critical parameters for which the symmetric configuration is never desirable. We observe

that for very low values of trade costs a symmetric equilibrium is not socially optimal. By

using the results in the set of Figures 3 we notice that in most cases market forces yield a

dispersed (agglomerated) configuration for a whole range of trade cost values for which it

is socially desirable to have an agglomerated (dispersed) pattern of activities.
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3.2 Collusion

In the case of collusion the function d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

is of the form (see Appendix C):

d∆V (λ)

dλ

∣

∣

∣

∣

λ= 1

2

= −B0 + τB1 − τ2B
2
2, (33)

where B0, B1, B2 > 0.

Similarly, the indirect utility gap computed at λ = 1 is a quadratic function of τ :

∆V (1) = −S0 + τS1 − τ2S
2
2, (34)

where S0, S1, S2 > 0 (see Appendix C for details).

From the results it emerges that there may exist four critical values of τ for which the

stability conditions change.7 In particular, there may be two break points, τ b1 and τ b2 (with

τ b1 < τ b2, for convenience) at which d∆V (1/2)/dλ changes sign, and two sustain points,

τ s1 and τ s2 (with τ s1 < τ s2), where ∆V (λ) changes sign for λ = 0, 1.

As done in the previous section we will use several numerical examples to study how

spatial equilibrium changes with trade costs for different parameter values.

Figure 5 plots the utility differential between regions, ∆V (λ), against λ for different

levels of trade costs in the interval (0, τ trade). All five curves are calculated at baseline

calibration under the assumption that the agricultural labor force A is equal to 0.5. As

anticipated in the previous section, in fact, the agriculture sector centrifugal force is much

stronger when firms collude.

For τ = 2.8 the utility differential is always positive (negative) if λ < (>)1/2 implying

that the symmetric configuration is stable. When τ = 2.6 a more complex dynamics emerges

since the utility differential crosses the zero-axe in three points. We notice that ∆V (0) < 0,

∆V (1) > 0 and d∆V (1/2)/dλ < 0 suggesting that there are three stable configurations:

one diversified and two agglomerated. On the other hand, for τ = 2 we observe that the

7Clearly, (33) and (34) may not have real roots.
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utility differential is always negative if λ < 1/2 and positive if λ > 1/2, implying that

manufacturing may agglomerate in either region. For τ = 0.5 we observe that ∆V (0) > 0,

∆V (1) < 0 and d∆V (1/2)/dλ > 0, implying that both the core-periphery pattern and

the dispersed equilibrium are unstable. In this case partial agglomeration equilibria may

emerge. Finally, for τ = 0.2 the core-periphery configuration cannot be sustained and

there exist only a symmetric diversified equilibrium. If transport costs are close to zero

the region where more than half of the manufacturing workers are located is less attractive

than the other region in utility terms. This result runs counter the common wisdom of the

core-periphery analysis, in which, for transport costs close to zero a core-periphery pattern

always arises.

The results of Figure 5 can be better illustrated in the bifurcation diagram plotted in

Figure 6a. It can be noted that the break and the sustain points are such that τ b1 <

τ s1 < τ b2 < τ s2 . For τ < τ b1 manufacturing firms are evenly distributed between the two

regions and agglomeration is no sustainable. For τ b1 < τ < τ s1 the symmetric equilibrium

is broken and the economy exhibits partial agglomeration. In the interval τ s1 < τ < τ b2

the world economy moves toward an equilibrium with full agglomeration. For trade costs

such that τ b2 < τ < τ s2 both the core-periphery pattern and the dispersed equilibrium are

stable. Finally, for high trade costs τ > τ s2 agglomeration ceases to be sustainable and

diversification is the only stable equilibrium.

We will show below that the critical values of transportation costs change for different

values of the parameters of the model and other possible configurations may emerge. In

particular, we will observe other three cases. Figure 6b shows the case in which there are

four critical points, such that τ b1 < τ s1 < τ s2 < τ b2. For τ < τ b1 there is symmetric

equilibrium. For trade costs such that τ b1 < τ < τ s1 we observe partial agglomeration

of economic activity. For τ s1 < τ < τ s2 all economic activity is concentrated in a single

region. For τ s2 < τ < τ b2 partial agglomeration equilibria take place. For higher trade

cost such that τ > τ b2 firms are equally located in both regions. Figure 6c reports the
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case in which there exist two break points but there are no sustain points.8 Specifically,

for τ < τ b1 economic activity is evenly distributed across space. For trade costs in the

interval τ b1 < τ < τ b2 symmetry is broken and equilibria with partial agglomeration arise.

For τ > τ b2 the symmetric equilibrium becomes the only stable pattern. Finally, Figure 6d

illustrates the case in which neither sustain points nor break points exist. In this case the

only possible stable equilibrium is the symmetric one.9

We observe that for low values of τ the symmetric equilibrium always prevails. By

contrast, the core-periphery configuration is sustainable for values of trade costs that are

neither too high nor too low. As in the standard case, for high trade costs firms are locally

dispersed. Collusion among firms could explain the observed bell-shaped curve of spatial

distribution of economic activity. We deduce that collusion among firms operating in the

same country may act as a centrifugal force at very low levels of transport costs. The

economic intuition for this result is the following.

Manufacturing workers as consumers are always more content to locate in a single region

(the core) since if located in the distant market (the periphery) they would bear a larger

fraction of trade costs. By contrast, as workers employed in the collusive sector, their

wage crucially depends on the firms’ profits and on the level of trade costs. For high trade

costs the existence of an immobile labor force in agriculture is the reason why it is always

convenient for firms to be geographically dispersed. At intermediate levels of trade costs it

is more beneficial for firms to be located in the same region, serving a largest local market

and reducing trade costs that they must sustain in the distant market. In the case of full

agglomeration, colluding firms act as a monopolist in both markets. At very low trade costs

agglomeration is not sustainable anymore, because the level of firms’ freight absorbtion

becomes negligible. This effect encourages stability of the diversified equilibrium, since it

becomes convenient for firms to move from the core to the periphery in order to serve the

distant market at a lower price.

The four possible dynamics illustrated in the bifurcation diagrams plotted in Figures

8In this case the polynomial (34) has not real roots.
9In this case both polynomials (33) and (34) have not real roots.
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5a-5d are summarized in Table 2. In the remainder of this section we will refer to this

Table to discuss how the critical values of τ vary with the degree of increasing returns, the

dimension of agriculture sector, the degree of substitution between goods and the intensity

of consumers’ preference for differentiated goods.

Degree of increasing returns, φ

Consider Figure 7a reporting the critical values of trade costs in the case of collusion as

function of the degree of increasing returns. When the degree of increasing returns is high

(i.e. low number of firms) the possible spatial allocation of economic activity is as in case

1 (figure 6a). Conversely, for a low level of increasing returns the spatial allocation is as

in case 3 (figure 6c). For large number of firms we observe in fact either symmetric

equilibrium or partial agglomeration. In other words, full agglomeration is not sustainable

when the number of firms is sufficiently high. In the limiting case φ → 0 the symmetric

equilibrium is the only possible configuration.

Dimension of agriculture sector, A

Figure 7b shows how break and sustain points are affected by the dimension of agriculture

sector. When the dimension of the agriculture sector is sufficiently small the allocation of

the differentiated sector across region in function of trade costs is as in case 1 (figure 6a).

Increasing A the configuration is first as in case 2 (figure 6b), then as in case 3 (figure 6c),

finally as in case 4 (figure 6d). The dimension of agricultural sector works as a centrifugal

force.

Degree of substitution, γ

Figure 7c illustrates how critical points change in function of the degree of substitution

among differentiated products. For a low degree of substitution the geographical distribution

of the manufacturing sector is as in case 1 (figure 6a). For a higher level, instead, the

distribution is as in case 3 (figure 6c). A core-periphery equilibrium is in fact sustainable
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only for a low degree of substitution among differentiated product. In the limiting case

γ → 1 the symmetric equilibrium is the only possible configuration.

Intensity of consumers’ preference for differentiated goods, α

Finally, Figure 7d plots the relationship between critical trade costs and the degree of

consumers’ preference for manufacturing goods. For any value of the intensity of consumers

preference for differentiated goods the possible allocation of manufacturing activity for

different values of transportation cost is as in case 1 (figure 6a). We observe that in

general α works as a centripetal force. Agglomeration is sustainable for a larger interval of

τ when households preference for differentiated goods is high.

3.2.1 Welfare analysis

Turning to the social desirability of the equilibrium it can be shown that total welfare (32)

has always an interior extremum at λ = 1/2. The grey areas in the set of Figures 8 represent

the combinations of trade costs and critical parameters for which the dispersed equilibrium

is not socially desirable. As in the absence of collusion the symmetric configuration is

the optimum only if trade costs are sufficiently high. By using the results in the set of

Figures 7 we observe that in most cases market forces yield a dispersed (agglomerated)

configuration for a whole range of trade cost values for which it is socially desirable to have

an agglomerated (dispersed) pattern of activities. Clearly, the symmetric equilibrium that

emerges for fully integrated market under collusion is not optimal.

4 Conclusions

In this paper we have studied how strategic interactions among oligopolistic firms may in-

fluence the location and the industrialization process. We have modified the basic cp model

setup proposed by Ottaviano et al. (2002) by introducing oligopolistic pricing competition.

In the standard cp models, in fact, the assumption of a large number of firms leads to

23



leaving aside any form of strategic interaction.

The analysis carried out in this paper has shown that strategic interactions play a

crucial role in driving spatial distribution of economic activity and that the robustness of

the results obtained in the standard cp models crucially depends on the type of pricing

competition. From the sensitivity analysis it stems out that, in the absence of collusion,

spatial configurations emerging for different levels of trade costs are robust to changes in

the parameters of the model. On the other hand, under collusion a more complex picture

emerges, since potential spatial allocations of manufacturing activity depend on market

fundamentals. The dimension of the agriculture sector is shown to be a much stronger

centrifugal force in the presence of colluding firms. Most importantly, when oligopolistic

firms do not collude a core-periphery pattern is always sustainable for low transportation

costs, consistently with the basic cp models. On the other hand, when oligopolistic firms

located in the same region collude in both countries, we obtain a bell-shaped curve of

spatial development and for low transportation costs diversification occurs. In other words,

the collusive behavior of firms could be an additional reason why we observe re-dispersion

of economic activity as trade costs decrease.

Turning to the welfare properties of the model we have shown that market forces alone

are able to yield agglomeration (dispersion) for levels of economic integration for which it

would be socially desirable to keep industrial activities geographically dispersed (agglom-

erated). In the particular case of zero trade costs we have observed that a core-periphery

pattern is always optimal, that is why we deduce that full economic integration will be

welfare improving only in the absence of any collusive behavior among firms. The explicit

consideration of a spatial dimension in an oligopolistic market provides supplementary rea-

sons to enforce competition among firms in an increasingly integrated world economy.
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Appendix A

Proof of Proposition 1

The result immediately follows from equations (16)-(19) by noting that

phf − phh =
b + cN − c

2b + 2cN − c
τ

[

1 +
c (nh − nf )

2b + cN − c

]

, (A1)

pfh − pff =
b + cN − c

2b + 2cN − c
τ

[

1 +
c (nf − nh)

2b + cN − c

]

. (A2)
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From the above equations it follows that phf − phh(pfh − pff ) < 1
2τ if nh − nf < (>

) 2b+cN−c
2(2b+2cN−c) ¥

Proof of Proposition 2

From equations (19) given (17) we have

phf − τ =
a

2b + cN − c
+ (A3)

+

[

b + cN − c

(2b + 2cN − c) (2b + cN − c)
cnh +

b + cN − c

2b + 2cN − c
− 1

]

τ .

The price phf net of transportation cost τ is larger than zero provided that

τ <
a (2b + 2cN − c)

(2b + cN − c) (b + cN) − (b + cN − c) cnh
. (A4)

For any nh in the interval 0 ≤ nh ≤ N the RHS of the above inequality has a minimum at

nh = 0. It follows that for any nh such that 0 ≤ nh ≤ N, phf−τ > 0 if τ < a(2b+2cN−c)
(2b+cN−c)(b+cN) .

The result for pfh − τ follows by symmetry ¥

Proof of Proposition 3

The result follows from a close inspection of the price gaps, phh − pff and pfh − phf using

(16)-(19):

phh − pff =
b + cN − c

(2b + 2cN − c) (2b + cN − c)
(nf − nh) cτ , (A5)

pfh − phf =
b + cN − c

(2b + 2cN − c) (2b + cN − c)
(nf − nh) cτ . (A6)

It follows that when nh > (<)nf then phh < (>)pff and pfh < (>)phf .

By the definitions of price indexes:

Ph − Pf = nhphh + nfpfh − nfpff − nhphf , (A7)

27



using the price equations one obtains:

Ph − Pf = −

[

c (nh + nf )

2b + cN − c
+ 1

]

b + cN − c

2b + 2cN − c
τ (nh − nf ) . (A8)

From the above equation it emerges that Ph < (>)Pf if nh > (<)nf ¥

Proof of Proposition 4

From (22)-(25) the price gaps are:

phf − phh =
(2b + cnf )(b + cnh)

4b(b + cN) + 3c2nhnf
τ , (A9)

pfh − pff =
(2b + cnh)(b + cnf )

4b(b + cN) + 3c2nhnf
. (A10)

Assume ad absurdum that the RHS of equation is larger than 1
2τ :

(2b + cnf )(b + cnh)

4b(b + cN) + 3c2nhnf
τ >

1

2
τ . (A11)

Re-arranging the above inequality gives:

c

4b2 + 4Nbc + 3nfnhc2
(2bnh − 2bN − cnfnh) > 0, (A12)

which is impossible since nh ≤ N. It follows that:

phf − phh =
(2b + cnf )(b + cnh)

4b(b + cN) + 3c2nhnf
τ <

1

2
τ . (A13)

¥
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Proof of Proposition 5

From equations (23) given (22) we have

phf − τ =
acnf + 2a(b + cnh)

4b(b + cN) + 3c2nhnf
+ (A14)

+

[

(b + cnh)nfc

4b(b + cN) + 3c2nhnf
+

(2b + cnf )(b + cnh)

4b(b + cN) + 3c2nhnf
− 1

]

τ .

The price phf net of transportation cost τ is larger than zero provided that

τ <
2ab + acN + acnh

2b2 + c2nfnh + 2Nbc
. (A15)

The result for pfh − τ follows by symmetry ¥

Proof of Proposition 6

The result can be derived form the price gaps, phh − pff and pfh − phf using (22)-(25):

phh − pff = c
a − bτ

4b(b + cN) + 3c2nhnf
(nh − nf ) , (A16)

pfh − phf = −c
a

4b(b + cN) + 3c2nhnf
(nh − nf ) . (A17)

It follows that when nh > (<)nf , then phh > (<)pff if τ < a/b, while pfh < (>)phf .

By definitions of price indexes:

Ph − Pf = nhphh + nfpfh − nfpff − nhphf , (A18)

Substituting the price equations (22)-(25) in (A18) yields:

Ph − Pf = −
(nh − nf )

(

2b2 + c2nfnh + 2bcnf + 2bcnh

)

4b(b + cN) + 3c2nhnf
τ . (A19)

From the above equation it emerges that Ph < (>)Pf if nh > (<)nf ¥
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Appendix B

Collusion among All Firms of the Economy

In the case of collusion among all firms of the economy a unique price will prevail in all

markets, whether the good is produced locally or imported from abroad.

The optimal price level will be determined by maximizing of the total amount of profits

of the world economy Πworld defined as

Πworld =

nh
∑

j=1

Πj,h (p) +

nf
∑

k=1

Πk,f (p) . (B1)

where p = phh = pff = phh = pfh. By solving the optimization problem we obtain that the

optimal price:

p =
1

2

(

a

b
+

1

2
τ

)

. (B2)

Trade will take place provided that p − τ > 0, that is when τ < 2
3

a
b . It can be easily shown

that in this case:

Vh − Vf = 0 (B3)

for any τ and λ, implying that
•

λ = 0 at all times. It follows that any spatial allocation of

firms is stable.

Appendix C

Break and Sustain Points in the Non-Collusive Case

With the help of a symbolic software10 it can be shown that in the absence of collusion we

have that:

d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

= − N
(4 b2+6 cNb−4 bc+2 c2N2−3 c2N+c2)2φ

×

[
(

12 φ b5 − 10 c2b3A + 4 cAb4 + 48Ncb4φ + 2N5c5φ + c4φ b + 6N3c5φ − 44 N3c4φ b
)

+

+
(

54 N3c3φ b2 + 23 c2φ b3 − 28 cb4φ − 2 Nc5A − 2 N2c5φ + 35N2c4φ b + 2N4c5A
)

+

10Maple files are available from the authors upon request.
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+
(

−6 N3c5A + 10N3c4bA + 6N2c5A − 98 N2c3φ b2 + 74N2c2φ b3
)

+

+
(

−10 Nc4φ b + 52Nc3φ b2 − 88 Nc2φ b3 − 8 c3φ b2 − 6 N4c5φ + 18N4c4φ b
)

+

+
(

−22 N2c4bA + 18N2c3b2A + 14Nc4bA − 26 Nc3b2A + 14Nc2b3A − 2 c4bA + 8 c3b2A
)

]τ2+

+2
(4 c3N3−9 N2c3+14 N2bc2+6 Nc3−20 Nbc2+16 Nb2c−c3+6 bc2−11 b2c+6 b3)Na

(−c+cN+2 b)(4 b2+6 cNb−4 bc+2 c2N2−3 c2N+c2)
τ

∆V (1) = −
1/2

(4 b2+6 cNb−4 bc+2 c2N2−3 c2N+c2)2φ
N×

[(35N2c4φ b − 98 N2c3φ b2+74N2c2φ b3−10 Nc4φ b + 52Nc3φ b2−88 Nc2φ b3)+

+
(

48 Ncb4φ − 22 N2c4bA + 18N2c3b2A + 14Nc4bA − 26 Nc3b2A
)

+

+
(

14 Nc2b3A − 2 c4bA + 12φ b5 − 10 c2b3A + 4 cAb4 + 18N4c4φ b
)

+

+
(

−6 N4c5φ + 2N5c5φ − 6 N3c5A + 10N3c4bA − 2 Nc5A + 2N4c5A
)

+

+(c4φ b − 8 c3φ b2 + 23 c2φ b3 − 28 cb4φ + 8 c3b2A + 6N2c5A2)+

+
(

6 N3c5φ − 44 N3c4φ b + 54N3c3φ b2 − 2 N2c5φ
)

]τ2+

+
(4 c3N3−9 N2c3+14 N2bc2+6 Nc3−20 Nbc2+16 Nb2c−c3+6 bc2−11 b2c+6 b3)Na

(−c+cN+2 b)(4 b2+6 cNb−4 bc+2 c2N2−3 c2N+c2)
τ

It can be shown that by assigning values to N the signs of the coefficients can be

determined univocally. Consider the case of N = 10, then we have the following results:

d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

=
(15390 c3φ+4779 c3L+6750 c2bφ+1737 c2Lb+920 cb2φ+206 cb2L+8 b3L+40 b3φ)a

(9 c+2 b)(4 b2+56 cb+171 c2)φ
τ+

−
(12 b5L+6543 c2b3L+145800 c5L+40 cb4A+15480 c3Ab2+44712 c3b2L)

(4 b2+56 cb+171 c2)2φ
τ2+

−
(139401 c4Lb+79380 c4Ab+452 cb4L+145800 c5A+1300 c2b3A)

(4 b2+56 cb+171 c2)2φ
τ2

∆V (1) = +10
(3159 c3+1206 bc2+149 b2c+6 b3)a

(9 c+2 b)(4 b2+56 bc+171 c2)
τ+

−5
(14580 c5A+139401 c4φ b+7938 c4bA+44712 c3φ b2+145800 c5φ)

(4 b2+56 bc+171 c2)2φ
τ2+

−5
(1548 c3b2A+4 cAb4+452 cb4φ+12 φ b5+6543 c2φ b3+130 c2b3A)

(4 b2+56 bc+171 c2)2φ
τ2

Break and Sustain Points in the Collusive Case

Under collusion we have the following results:

d∆V (λ)
dλ

∣

∣

∣

λ= 1

2

= −8 (L+A)a2c2L2

(4 bφ+cL)(16 b2φ2+16 bφ cL+3 c2L2)
+
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+2
La(192 b4φ4+448 b3φ3Lc+380 c2L2φ2b2+132 c3L3φ b+13 c4L4+12 c3L2φ bA+16 c2Lφ2b2A)

φ (16 b2φ2+16 bφ cL+3 c2L2)
2 τ+

−
L(192 b5φ5+512 b4φ4Lc+508 b3φ3L2c2+220 b2φ2L3c3+37 bφ L4c4)

φ2(16 b2φ2+16 bφ cL+3 c2L2)
2 τ2+

−
L(2 c5L5+100 b2φ2L2c3A+64 b4φ4cA+24 bφ L3c4A+144 b3φ3Lc2A+2 c5L4A)

φ2(16 b2φ2+16 bφ cL+3 c2L2)
2 τ2

∆V (1) = −1/16 (L+A)L2c2a2

φ2(bφ+cL)b2
+

1/16
(4 c2L2+c2AL+16 bφ cL+12 b2φ2)aL

φ2b(bφ+cL)
τ+

−1/32
(8 c2L2+5 c2AL+20 bφ cL+4 cbφ A+12 b2φ2)L

φ2(bφ+cL)
τ

2

In this case the signs of the coefficients can be immediately determined, thus by Descartes’

sign rule we know that both polynomials have two positive roots.

32



Table 1

Baseline calibration

L = 1

q0 = 1

α = 3

β = 1

γ = 0.5

φ = 0.25

Implied parameter values

N = 4

a = 1.2

b = 0.4

c = 0.4

Table 2

Stable Equilibria at

Fig. No. τ b No. τ s λ = 1/2 λ = 0, 1 0 < λ < 1

Case 1 6a 2 2 τ b1< τ s1< τ b2< τ s2 yes yes yes

Case 2 6b 2 2 τ b1< τ s1< τ s2< τ b2 yes yes yes

Case 3 6c 2 0 τ b1< τ b2 yes no yes

Case 4 6d 0 0 yes no no
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Figure 1: Wiggle Diagram under no Collusion
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Figure 2: Bifurcation Diagram under no Collusion
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Critical Values of τ under no Collusion, Sensitivity Analysis
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Social Desirability of the Symmetric Equilibrium under no Collusion, Sensitivity Analysis

Figure 4a
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Figure 5: Wiggle Diagram under Collusion

τ = .5
τ = 2.8

τ = 2

τ = 2.6

τ = .2–3

–2

–1

0

1

2

∆

0.5 1
λ

37



Bifurcation Diagrams under Collusion

Figure 6a
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Critical Values of τ under Collusion, Sensitivity Analysis

Figure 7a
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Social Desirability of the Symmetric Equilibrium under Collusion, Sensitivity Analysis

Figure 8a
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